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Modal Characteristics of Crossed
Rectangular Waveguides

FENG-LING CHENG LIN

Abstract—The modal solution for the crossed rectangular wave-
guide is presented. Cutoff frequencies and meodal fields are
determined by formulating an integral eigenvalue equation which can
be solved by application of the Ritz-Galerkin method. Field equa-
tions are given for both TE and TM modes. The calculated cutoff
frequencies of several lower order modes agree very well with the
available experimental results in the literature.

1. INTRODUCTION

N PHASED ARRAY antenna systems, open-ended

waveguides are commonly used as the radiating elements.
In order to provide dual-polarization capability, circular or
square waveguides are used because they can support two
orthogonal modes [1]. In addition, a wide bandwidth is
required for the propagation of the dominant mode.

It has been known for years that ridged waveguides have
been useful in microwave systems due to their wide band-
width properties. For double-ridged waveguide, the
TE,-TE,, modal bandwidth is increased with the ridge
loading. However, a system capable of operating in two
polarizations is desirable in practical applications. Thus the
waveguide with a 90° rotational symmetry is adopted.
Chen et al. [2] have performed detailed modal analysis on
quadruple-ridged circular and square waveguides by means
of Silvester’s finite element program [3]. It was shown that
for square waveguides, quadruple-ridged loading always
decreases the TE;,-TE,, bandwidth, whereas for circular
waveguides, a finite amount of additional separation be-
tween TE,; and TM,; modes can be achieved when the
ridge dimensions are chosen properly.

The crossed rectangular waveguide possesses 90° rota-
tional symmetry, thus providing dual-polarization proper-
ties. It can also be viewed as ridged waveguide with square
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ridges loading its corners. It is of physical interest to
investigate the modal characteristics and to determine the
cutoff frequencies and the transverse field patterns.

With the complete knowledge of the waveguide’s
eigenvalue spectrum, one can solve many problems cur-
rently encountered. One such problem for instance, is the
radiation of crossed rectangular waveguide clements in an
array environment where excitation of asymmetrical higher
order modes may create blind spots in the array scan
pattern. Another problem is to predict the transmission
characteristics of a plane wave incident at any arbitrary
angle through an infinitely thin conducting sheet perforated
periodically with crossed rectangular shaped apertures. The
latter is particularly useful in the design and development of
dichroic subreflectors for ground station and spacecraft
antenna systems [4].

Modes of crossed rectangular waveguide have been
determined by Stalzer et al. [5] with the aid of a com-
puter program developed by Konrad and Silvester [6]
using the triangular finite element method. In their studies,
the transverse fields for each mode can not be obtained in
explicit forms for further numerical manipulation. The
Ritz-Galerkin method [7] has been successfully applied by
Montgomery [8] to obtain the complete eigenvalue solu-
tion of dual-ridged waveguides. In this paper an integral-
eigenvalue problem is formulated for the crossed rectangu-
lar waveguide and solved numerically by applying the
Ritz-Galerkin method. The modal fields obtained are in the
form of Fourier series which can be conveniently used for
phased array analysis and aperture reflection coefficient
determination for a waveguide element in an infinite array
environment.

I1. THEORETICAL FORMULATION

The geometry of the crossed rectangular waveguide is
shown in Fig. 1. The plane x = 0 is a symmetry plane of the
waveguide and the field is calculated for only half of the cross
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Fig. 1. Geometry of crossed rectangular waveguide,

section (x > 0). In general, no symmetry is assumed about
the x axis. Hence the eigenvalue problem can be divided into
the following four distinct cases:

1) TE-electric mode: TE fields with a metallic wall at

x =0;

2) TE-magnetic mode: TE fields with a magnetic wall at
x =0;

3) TM-electric mode: TM fields with a metallic wall at
x=0;

4) TM-magnetic mode: TM fields with a magnetic wall at
x=0.

\

The text of this paper is based mainly on TE fields with a
metallic symmetry plane at x = 0. The other three cases are
presented in the Appendix.

In a crossed rectangular waveguide with the dimensions
shown in Fig. 1, the TE-mode functions &(7 ), where Fis the
transverse coordinate vector, are normalized over the entire
cross section A

jA () - 8(Fr) dA = 1 | (1)

and can be derived from the scalar functions g(¥7). Note that
g(7y) satisfies the wave equation

V?g(Fr) + k3g(Fr) =0 )

where k; is the waveguide eigenvalue. The solutions of this
wave equation represent distinct waveguide modes. The
cutoff wavelength for mode i, denoted by A, can be cal-
culated from the eigenvalue k;, i.e.,

ha=" =12, 3)
kTi
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The TE boundary conditions that# - Vg = 0 on a metallic
wall, where 7 is the normal to the boundary, yield

gl(FT) = M1y COS (kxlnx)

n

nn
* COS ”
as + [25)

is

(Y“as)); 0<x<a
(4)
and

az))

gZ(FT) = Z Naom Cos (kx2m(x -

m=0

cos [—F (y—aq) a,<x<a
" Co - ; SXsa
a4+a2‘y 4 1

(5)

for region I and region II, respectively, where

nn
kT = ’
as + (13 az + oy
kxln -
nm
_.] - k kT < ’ (6)
as + a3 as + as
mn mmn
k%’ - ’ 5 kT = ’
as + ay aq + ay
kx2m = -
mm mn
—j k2 k . (7
J a, + a, T '™ a,+d, 7)

The basis fields are defined as
é(Fr) = Vg(Fr) x 2. 8)

Hence one can easily derive that for x > 0,

cos (k,1,x)

é(Fr) = — Z Mn [w

as

sin [——( NE
° —da X
a3+a'3 3

y

— Ky SiD (K1, X)
nm )

cos (a3 iy (v— a3)) y} 9)

é,(Fr) = —anm[ "

€os (kam(x -

az))

4

. sin [— (v —aq))x
a4+a;y 4

- kx2m sin (kam(x - aZ))

- cos [~ (v —aq)}
a4+agy a)]y

for region I and region II, respectively.
Applying the condition for the continuity of the scalar
function at x = @, and matching the boundary conditions

(10)
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on the conducting wall result in the following integral
equation

o 7 nn ! 7
w0 f Eg(y) COos (a3 + a,?) (y - 03)) dy

kxlnan(a3 + al3)

n=0
nw
. t k —
co ( xlnal) cos (a3 + a% (y (,13))
4 7 mﬂ ' s
o | Eg(y)cos( -V - ay)) dy
_ Z —ay aq + ay
m=0 kxzm&'m(aat + a:’r)
mm
- cot (k — — 11
cot kealar — az) cos (2 =)} (a1)

where E(y)is the y component of the unknown electric field
at x = a,. By application of the Ritz-Galerkin method and
expanding E (y) in the eigenfunction of region II

= T
E0)- 3 Coeos( T ov-a) 02
one obtains'
R N cot (kyynay)
Cr )_—xl‘Pann
r;O n=0 kxlnan(a3 + ag’)) 8
R cot (k(a; —a
=Y C, ( "ZI;’( 1~ 4)) 6as + a4)ogs
r=0 x2q
g=0,1,2,---,R (13)
where 6, is the Kronecker delta, P,, is defined as
a4 nrw
P, = f_w cos (a3 d (- a3))
rn
: —a,)|dy, (14
cos (%= adl) s (14

g, =1for n =0 and ¢, = § for n # 0, and similarly for ¢,
Note that the infinite summations over »n and r have been
truncated to (N + 1) and (R + 1) terms, respectively. Equa-
tion (13) can also be written as

R
Zo qu(kT)Cr = 0; q = 07 la 27 T R (15)

or conveniently expressed as a matrix equation
[H,]JC=0 (16)

with the matrix element H,(k;) (the gth row and the rth
column) defined as

t (kesglaz —
Hoy (g = 1 lej(‘jz W), fay + a)on
xX2q

- cot (kxlnal)

O Wnd) p op (17
n=0kx1n8n(a3+al3) e ( )

! The notations and the procedures adopted here are similar to those
used in [8] for ridged waveguides.
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Fig. 2. Configuration of symmetrical crossed rectangular waveguide.

where k.4, and k,,, have been defined in (6) and (7). The
determinant of the matrix [ H ,,] must be zero in order to have
nontrivial solutions for this eigenvalue problem. The solu-
tions of the equation

det [H,]=0 (18)

give the eigenvalues and the corresponding C’s are the
eigenvectors.

The relationship between C,, components of eigenvector
C, and the coeflicients #4,,%,,, is given by

R
2 C.P,
r=0
— " 1
Mn kxln sin (kxlnal)gn(a3 + ag) ( 9)
Cn
Hom = (20)

kx2m sin (kam(al - aZ))-
The modal fields can be subsequently determined.

II1. NUMERICAL SOLUTIONS AND RESULTS

The nonlinear equation (18) for the TE-electric case and
the corresponding ones for other three cases are solved by
low-order approximation. The convergence of the approxi-
mate solution is demonstrated by the variation of the
dominant mode TE,, (TE-magnetic case) eigenvalue for a
symmetrical crossed rectangular waveguide (Fig. 2 with g =
0.45 in, b = 0.1785 in), as illustrated in Table L. It is shown
that all the results agree within one percent but for the
lowest orders of approximation. In addition, the conver-
gence of the eigenvalues of higher order mode (TE,; mode
of TE-electric case as an example) with the same configura-
tion (a@ = 0.45in, b = 0.1785 in) is shown in Table II. Except
for the lowest orders of approximation, accuracies of the
eigenvalues are within 0.5 percent.

In this work a 10 x 10 matrix of [H ] was chosen as a
compromise between solution accuracy and the required
computation time. The solutions of (18) may be located very
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TABLE 1
VARIATION OF DOMINANT EIGENVALUE WITH NUMBER OF
TERMS IN REGION I AND REGION II

Number of Terms Dominant Eigenvalue
Region II | Region I TEy o Mode
R+1 N+1 kp (rad/in)
2 2 7.723287
Z 5 7.445809
2 10 7.395242
2 15 7.390151
2 20 7.388413
2 40 7.386748
2 60 7.386440
2 80 7.386332
2 99 7.386287
5 2 7.723658
5 5 7.450720
5 10 7.415417
5 15 7.405985
5 20 7.401436
5 40 7.396310
5 60 7.395450
5 80 7.394883
5 99 7.394693
10 2 7.723697
10 5 7.451198
10 10 7.416476
10 15 7.407659
10 20 7.403908
10 40 7.398945
10 60 7.397131
10 80 7.396788
10 99 7.396656
15 2 7.723703
15 5 7.451277
15 10 7.416646
15 15 7.407914
15 20 7.404246
15 40 7.399703
15 60 7.398357
15 80 7.397486
15 93 7.397271
TABLE 1I

VARIATION OF TE,, MODE EIGENVALUE WITH NUMBER OF
TERMS IN REGION I AND REGION 11

Number of Terms :
Region IT REGION T TEZl Mode Eigenvalue
R+1 N+1 kn (rad/in)
2 5 21.925655
2 10 21.884446
2 15 21.876697
2 20 21.874692
2 40 21.872954
2 60 21.872647
2 B8O 21.872539
2 99 21.872488
5 5 21.940361
5 10 21.912136
5 15 21.902429
5 20 21.897010
5 40 21.888971
5 60 21.888275
5 80 21.888042
5 929 21.887934
10 5 21.942444
10 10 21.915077
10 15 21.906243
10 20 21.901946
10 40 21.895400
10 60 21.892428
10 80 21.891952
10 929 21.891753
15 5 21.942830
15 10 21.915610
15 15 21.906905
15 20 21.902733
15 40 21.896791
15 60 21.894764
15 80 21.893237
15 99 21.892882

close to singularities and care must be taken in the root-
finding process. A program was written for the IBM 360/95
computer. The values of det [H ] were determined when k
was scanned over the region of interest. The program
automatically decreases the incremental size of k when a
change in sign of det [H,] takes place. It can resolve the
roots with little separation and those located in the neigh-
borhood of singularities. The corresponding eigenvector
components C, for a particular eigenvalue k; can be ob-
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(arig)

Fig. 3. Normalized cutoff frequencies as a function of b/a for TE-electric
modes.

tained from (15). All the C,’s with r # 0 are evaluated in
terms of C,. Since the basis field é,(7 ) consists of two parts

BN [ (% x>0
et(rT) - {él— (TT); x <0 (21)
where
oy e:(Fr); region I
¢ (r)= é,(Fr); region I

and e, (F;) can be obtained from é; (F;) by appropriate
symmetry conditions, subsequent normalization of e,(Fr)
[see equation (1)] yields the value of C,,.

The normalized modal cutoff frequencies (a/i.) of a
symmetrical crossed rectangular waveguide are determined
and shown in Figs. 3-6 as a function of the ratio b/a
for all four distinct modes. For the case of b/a =0, the
cutoff frequencies indeed coincide with those of the square
waveguide of dimension a. As a consequence, the modal
designations are referred to those in square waveguide with
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Fig. 4. Normalized cutoff frequencies as a function of b/a for TE-
magnetic modes.

the corresponding boundary conditions. Note for several
lower order modes, ridge loading on the corners of a square
waveguide raises the cutoff frequencies of the TE,;,TM,
modes (Fig. 4, Fig. 6), and splits the TE,,TE,, modes into
TE,,, and TE,,, modes, lifting the orthogonal degeneracy
(Fig. 3). However, the degeneracy of the TEy; and TE,,
modes is retained, as can be seen from Figs. 3 and 4, in
spite of ridge loading. The cutoff frequencies calculated for
TE o, TE;,, and TM; modes agree with the experimental
results [5] within one percent except in a couple of points.
For higher order modes TE,;; and TE ; (or TM;;and TM ;)
modes (i = even, j = odd or vice versa) remain degenerate,
whereas the degeneracies of TE;; and TE; (or TM;; and
TM;;) modes (i = even, j = even, i # j; ori = odd, j = odd,
i # j)in a square waveguide are destroyed by ridge loading.

The bandwidth percentage of a waveguide is defined as

Aee — A'c+

BW == i x 200 percent (22)

A

c—

(asic)

0.5 = I 1 | I
0.0 0.1 0.2 0.3 0.4
(b/a)
Fig. 5. Normalized cutoff frequencies as a function of b/a for TM-electric
modes.

where A, _ is the cutoff wavelength of the fundamental mode,
and A, is the cutoff wavelength of the first higher order
mode. The bandwidth characteristics for symmetrical
crossed rectangular waveguides have been calculated and
plotted in Fig. 7. The maximum bandwidth (about 38
percent) incurs when b/a = 0.225. To the left of the peak as
shown in Fig. 7, the bandwidth is determined by the TE;,
and TM,;; modes, whereas to the right by the TE,, and
TE,, modes. This featurc of a 38-percent maximum band-
width over the 34 percent for a square waveguide makes
the symmetrical crossed rectangular waveguide compatible
with the quadruple-ridged circular waveguide [2]. However,
if asymmetrical excitation is applied, the maximum band-
width of 66 percent can be achieved when b/a = 0.325 where
TM,; mode is the deciding factor.

1V. CoNcCLUSION

Theoretical formulas for finding cutoff frequencies and
modal field expressions are obtained for crossed rectangular
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Fig. 6. Normalized cutoff frequencies as a function of b/a for TM-

magnetic modes.
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Fig. 7. Bandwidth characteristic curve for symmetrical crossed rectangu-
lar waveguide.
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waveguide by application of the Ritz-Galerkin method.
A specific example of a symmetrical rectangular waveguide
is chosen. Cutoff frequencies are calculated numerically and
verified by available experimental data. The bandwidth can
be increased to a maximum of 38 percent when waveguide
dimensions are properly selected. The numerical results
obtained here agree with those by the method of partial
regions [9). It is believed that the modal field equations
formulated here can be used in a modal matching technique
[10], [11] to predict transmission characteristics of a plane
wave through a thin conducting sheet perforated period-
ically with crossed rectangular shaped apertures.

APPENDIX

A. TE-Magnetic Mode
The electric fields in regions T and IT are given by

=—Z mn[

Csin(— (y ~ a5)) %
as + das y 3
+ ky1p CO8 (Kyy,X)

cos e ( — ) y
* CO a
as a/3 Y VY

=X "[T

ay

Sin (kxlnx)

(23)

08 (K, zm(x — a3))

kx2m sin ( x2m(x — a2 )

St

Making the expansion

R m
- 3 Cooos( T 00— a)

r=0 4 4

one finds that the matrix ¢lements are given by

_cot (kyaylas —

ai)) (

qu(kT) = 2 + aa)(sq"

kx2q

L tan (Ky1,a;)
+ P, P, ———"— (26

ngo § kxlngn(aS + (13) ( )
The relations between field coefficients and eigenvector
components are

R
- Z CrPnr
= = 27
Mn kxln Cos (kxlnal)sn(a?a + a/3) ( )
—-C
m= - Y . 28
12 Kyam SN (Kyzm(az — ay)) @)
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B. TM-Electric Mode

The transverse electric fields in regions I and II are given
by

L
rT) = ZI éln [kxln cos (kxinx)

R —"

+ a::-tag sin (ky1,X)
s 0-a)s| @)
) = 3. [k €05 s = )
- sin (ajfai; - a4)) X
+ o sin (kyom(* — a3))
© cos ( a:f A - a4)) y} (30)

The z components of the electric field are given by

zlz(FT) = xlnx)

L
Y. &y, sin (k
n=1

- sin [ (v—as)) 2
a3+a,3y 3

M
eZz rT Z £2m sin x2m(x - a2))

mn
- sin - . 32
si (a4 ) v a4)) z (32)
Making the expansion
L
= C, si - 33
3 ca( T v-a) o
one finds that the matrix elements are given by
H (k) = kyaq cot (kypg(az — ay))i(as + a4)o,
+2 Z P Pk 1, cot (keinai)/(as + a3) (34)
where
s nm
P/ = 1 pa—
. rn
sin (a4 v - a4)) dy. (35)
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The relations between fiéld coefficients and eigenvector
components are

L
Y C,P,
r=1
= 36
= in (eespa il + a5) 6)
-C
éZm = " (37)

—ay))’

Sin (kxlm (az

C. TM-Magnetic Mode

The transverse electric fields in regions I and II are given
by

L
= = Z éln {kxln Sin (kxlnx)
n=1

sin i ( 13
. —a
as + a; y 3

nw

cos (k
a3 + a3 ( xlnx)
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0-a)s] (39)
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The z components of the electric field are given by

(39)
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one finds that the matrix elements are given by
qu(kT) = ))%((14 + ai,)&,,,

-2 z P, P k1, tan (kyy,a,)/(as + d5).

kaq CO'[ (kxzq(az b al
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The relations between field coefficients and eigenvector
components are

L
Y C. P,
—_ r=1 44
Sin cos (ky1nay 5(as + a3) (44)
-C
Eom=— e . 45
2 sin (kyzm(az — ay)) )
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Iterative Solutions of Waveguide
Discontinuity Problems

MAGDY F. ISKANDER, MEMBER, IEEE, AND M. A. K. HAMID, SENIOR MEMBER, IEEE

Abstract—The method of overlapping regions, together with
Schwarz’s technique, is applied to waveguide discontinuity problems
to illustrate its potential and basic advantages and disadvantages over
other methods. The method reasonably corrects an arbitrary initial
assamption of field distribution in the plane of discontinuity to the
final value in a small number of iterations. The advantages are
illustrated for a waveguide bend and dumbbell shaped waveguide as
examples of transverse and longitudinal discontinuities, respectively.
Numerical results for the case where only the electric field is par-
allel to the sharp edge discontinuity are presented and compared
with available data, while extension to the case where only the
magnetic field is parallel to the edge is discussed.

I. INTRODUCTION

HARP waveguide discontinuities are extensively used in
numerous microwave power and communication cir-
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cuits, and their effects have been under investigation in the
last few decades. Generally, these discontinuities are charac-
terized as either transverse or longitudinal, depending on
whether the discontinuity lies in a plane transverse or
parallel to the direction of propagation, respectively, or
both. Waveguide junctions and bends are typical examples
of transverse discontinuities, while waveguide complex cross
sections belong to the class of longitudinal discontinuities.

Earlier attempts to characterize such discontinuities in-
clude rigorous, quasi-rigorous, numerical, and experimental
techniques [1]-[4]. The results normally permit computa-
tion of scattering matrix parameters, which may be used to
evaluate the parameters of an equivalent circuit, cutoff
wave numbers, and mode coefficients leading to propaga-
tion coefficients and field configurations.

While no method can be expected to deal with the most
general case of mixed types of discontinuities and arbitrary
waveguide boundaries, the choice of one method over others
for the most common discontinuities depends on the shape
as well as the electrical and physical dimensions of the
waveguide. Thus due to its asymptotic nature, the geometri-
cal theory of diffraction, in which the discontinuity is viewed
as multiple body interaction, becomes more appropriate as
the smallest linear dimension exceeds one wavelength [5].
However, when the distances between edges and corners are



