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Modal Characteristics of Crossed
Rectangular

FENG-LING

Abstract—The modal solution for the crossed rectangular wave-

guide is presented. Cutoff frequencies and mndal fields are
determined by formulating an integral eigenvalue equation which can
be solved by application of the Ritz–Galerkin method. Field equa-

tions are given for both TE and TM modes. The calculated cutoff
frequencies of several lower order modes agree very well with the

available experimental results in the literature.

I. INTRODUCTION

I N PHASED ARRAY antenna systems, open-ended

waveguides are commonly used as the radiating elements.

In order to provide dual-polarization capability, circular or

square waveguides are used because they can support two

orthogonal modes [1]. In addition, a wide bandwidth is

required for the propagation of the dominant mode.

It has been known for years that ridged waveguides have

been useful in microwave systems due to their wide band-

width properties. For double-ridged waveguide, the

TEIO-TE20 modal bandwidth is increased with the ridge

loading. However, a system capable of operating in two

polarizations is desirable in practical applications. Thus the

waveguide with a 90° rotational symmetry is adopted.
Chen e~ al. [2] have performed detailed modal analysis on

quadruple-ridged circular and square waveguides by means

of Silvester’s finite element program [3]. It was shown that

for square waveguides, quadruple-ridged loading always

decreases the TEIO-TEI ~ bandwidth, whereas for circular

waveguides, a finite amount of additional separation be-

tween TEI ~ and TMOI modes can be achieved when the

ridge dimensions are chosen properly.

The crossed rectangular waveguide possesses 90° rota-

tional symmetry, thus providing dual-polarization proper-

ties. It can also be viewed as ridged waveguide with square
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ridges loading its corners. It is of physical interest to

investigate the modal characteristics and to determine the

cutoff frequencies and the transverse field patterns.

With the complete knowledge of the waveguide’s

eigenvalue spectrum, one can solve many problems cur-

rently encountered. One such problem for instance, is the

radiation of crossed rectangular waveguide elements in an

array environment where excitation of asymmetrical higher

order modes may create blind spots in the array scan

pattern. Another problem is to predict the transmission

characteristics of a plane wave incident at any arbitrary

angle through an infinitely thin conducting sheet perforated

periodically with crossed rectangular shaped apertures. The

latter is particularly useful in the design and development of

dichroic subreflectors for ground station and spacecraft

antenna systems [4].

Modes of crossed rectangular waveguide have been

determined by Stalzer et al. [5] with the aid of a com-

puter program developed by Konrad and Silvester [6]

using the triangular finite element method. In their studies,

the transverse fields for each mode can not be obtained in

explicit forms for further numerical manipulation. The

Ritz-Galerkin method [7] has been successfully applied by

Montgomery [8] to obtain the complete eigenvalue solu-

tion of dual-ridged waveguides. In this paper an integral-

eigenvalue problem is formulated for the crossed rectangu-
lar waveguide and solved numerically by applying the

Ritz–Galerkin method. The modal fields obtained are in the

form of Fourier series which can be conveniently used for

phased array analysis and aperture reflection coefficient

determination for a waveguide element in an infinite array

environment.

II. THEORETICAL FORMULATION

The geometry of the crossed rectangular waveguide is

shown in Fig. 1. The plane x = Ois a symmetry plane of the

waveguide and the field is calculated for only half of the cross
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Y The TE boundary conditions that ii “ Vg = Oon a metallic

I

wall, where A is the normal to the’ boundary, yield
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Fig. 1. Geometry of crossed rectangular waveguide.

section (x > O). In general, no symmetry is assumed about

the x axis. Hence the eigenvalue problem can be divided into

the following four distinct cases:

1) TE-electric mode: TE fields with a metallic wall at
x=();

2) TE-magnetic mode: TE fields with a magnetic wall at

91(~T) = ~joVI. Cos (LIP)

“ Cos( )*(Y-%) ; O<x Sal

(4)

and

d~~) = f. mm cos (ht(~ – d)

“ Cos( )*(Y-@) ; a1Sx<a2

(5)

for region I and region II, respectively, where

k _ F3sr; ‘T’=I“n--’-T; ‘T<= “)

kx2m=
FE=r; ‘%=’4
‘-’J%J= ‘T<5 ‘7)

X’=o;

3) TM-electric mode: TM fields with a metallic wall at ‘he basis ‘ields are ‘efined as

X=o;

4) TM-magnetic mode: TM fields with a magnetic wall at
i?~(~,) = Vg(r,) X ,?. (8)

X=o. \ Hence one can easily derive that for x >0,

The text of this paper is based mainly on TE fields with a

metallic symmetry plane at x = O.The other three cases are
m

[

m

presented in the Appendix.
‘l(FT) = — ~ qln — COS (kXl. x)

~=1) a3 + a~

In a crossed rectangular waveguide with the dimensions

shown in Fig. 1, the TE-mode functions ZJr=), where r=is the “ sin
( )
%(y-a~) f

transverse coordinate vector, are normalized over the entire

cross section A – kX1n sin (kX.nx)

(1) Cos( )1*(Y-a3) Y

m

and can be derived from the scalar functions g(r~). Note that ~z(~,) = – ~ t’jz~
[
+ Cos (kx2m(x – aJ)

g(~i) satisfies the wave equation
~.o a4 + a4

v’g(~,) + k;g(r,) = O (2) . sin
( )

a(y-a4) ~

(9)

where k, is the waveguide eigenvalue. The solutions of this – kX2m sin” (kX2m(x – a2))

wave equation represent distinct waveguide modes. The

cutoff wavelength for mode i, denoted by &i, can be cal- “ Cos
( )1=(Y-U4)Y (lo)

culated from the eigenvalue kTi3 i.e.,

for region I and region II, respectively.

Aci=g; i=l,2, . . . . (3)
Applying the condition for the continuity of the scalar

TI function at x = a ~ and matching the boundary conditions
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on the conducting wall result in the following integral

equation

m j“’%(oos(fib’-.+’
Z. ‘a” kX...sJa3 + a~)

“ cot (kxlnal) Cos
(
a (Y - ‘3)

)

=20J:4,Eg(Y’).os(~(Y’-.4))~Y’
k.zmew(a~ + u~)

. cot (kXzm(al – az)) cos
( )
=(Y’ - a4) (11)

where E~(y) is the y component of the unknown electric field

at x = al. By application of the Ritz–Galerkin method and

expanding E~(y) in the eigenfunction of region II

E/Jy) = fj C, COS

(
*(Y - ‘4)

~=o )

one obtains 1

q=0,1,2, . . ..R

where ilqr is the Kronecker delta, P., is defined as

Pnr = j“’ Cos
(
%(Y - “3)

—~4, )

“ Cos( )*(Y -d L@,

(12)

(13)

(14)

e. = 1 for n = O and g. = j for n # O, and similarly for &r

Note that the infinite summations over n and r have been

truncated to (N + 1) and (R + 1) terms, respectively. Equa-

tion (13) can also be written as

~ H,r(kT)Cr = O; q=o, 1,2, ”””, R (15)
~=o

or conveniently expressed as a matrix equation

[H4r]C = O (16)

with the matrix element Hqr(kT) (the qth row and the rth

column) defined as

Hqr(kr) =
cot (k.zq(az – ‘I)) ~ (U4 + ai)~q~

kx2q
q

N cot (kX.. al) ~ p

+ ~~o kX1. &n(a3 + a3‘)
n, w (17)

1 The notations and the procedures adopted here are similar to those
used in [8] for ridged waveguides.
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Fig. 2. Configuration of symmetrical crossed rectangular waveguide.

where kX1~ and kX2q have been defined in (6) and (7). The

determinant of the matrix [Hqr] must be zero in order to have

nontrivial solutions for this eigenvalue problem. The solu-

tions of the equation

det [Hqr] = O (18)

give the eigenvalues and the corresponding C% are the

eigenvectors.

The relationship between C,, components of eigenvector
C, and the coefficients ql.,s12~ is given by

: crPnr
~=c)

‘1” = kX1. sin (kX.Ha1)eJa3 + aj)
(19)

cm

“m= kX,m sin (kX2m(a1 – a2)) o
(20)

The modal fields can be subsequently determined.

III. NUMERICAL SOLUTIONS AND RESULTS

The nonlinear equation (18) for the TE-electric case and

the corresponding ones for other three cases are solved by

low-order approximation. The convergence of the approxi-

mate solution is demonstrated by the variation of the

dominant mode TEIO (TE-magnetic case) eigenvalue for a

symmetrical crossed rectangular waveguide (Fig. 2 with a =

0.45 in, b = 0.1785 in), as illustrated in Table I. It is shown

that all the results agree within one percent but for the

lowest orders of approximation. In addition, the conver-

gence of the eigenvalues of higher order mode (TEZ1 mode
of TE-electric case as an example) with the same configura-

tion (a = 0.45 in, b = 0.1785 in) is shown in Table II. Except

for the lowest orders of approximation, accuracies of the

eigenvalues are within 0.5 percent.

In this work a 10 x 10 matrix of [Hqr] was chosen as a

compromise between solution accuracy and the required

computation time. The solutions of (18) maybe located very
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TABLE I
VARIATION OF DOMINANT EIGENVALU~ WITH NUMBER OF

TERMS IN REGION I AND REGION 11
—

Number of Terms Dominant Eigenvalue
ReglOn II Region I TEIO Mode

R+l N+l kT (rad/in)

2
.

2 7.723287
2 5 7.445809
2 10 7.395242
2 15 7.390151
2 20 7.388413
2 40 7.386748
2 60 7.386440
2
2
5
5
5
5
5
5
5
5
5

10
10
10
10
10
10
10
10
10
15
15
15
15
15
15
15

80
99

2
5

10
15
20
40
60
80
99

2
5

10
15
20
40
60
80
99

7.396310
7.395450
7.394883
7.394693
7.723697
7.451198
7.416476
7.407659
7.403908
7.398945
7.397131
7.396788
7.396656
7.7237o3
7.451277
7.416646
7.407914
7.404246

.— —

TABLE II
VARIATION OF TE,, MODE EIGENVALUE WITH NUMBER OF

TERMS-IN REGION I AND REGION II

Number c

T

2
2
2
2
2
2
2
2
5
5
5

Terms
Region 1

N+l

5
10
15
20
40
60
80
99

5
10
15
20
40
60
so
99

5
10
15
20
40

TE21 Mode Eigenvalue

kT (rad/in)
—

21.925655
21.884446
21.876697
21.874692
21.872954
21.872647
21.872539
21.872488
21.940361
21.912136
21.902429
21.897010
21.888971
21.888275
21.888042
21.887934
21.942444
21.915077
21.906243
21.901946
21.895400
21.892428
21.891952
21.891753
21.942830
21.915610
21.906905
21.902733
21.896791
21.894764 “
21.893237
21.892882

close to singularities and care must be taken in the root-

finding proc%s. A program was written for the IBM 360/95

computer. The values of det [Hg,] were determined when k ~
was scanned over the region of interest. The program

automatically decreases the incremental size of k ~ when a

change in sign of det [HQ,] takes place. It can resolve the

roots with little separation and those located in the neigh-

borhood of singularities. The corresponding eigenvector

components C, for a particular eigenvalue k ~ can be ob-

//

0.0 0.1 0.2 0.3 0.4
(b/a)

Fig. 3. Normalized cutoff frequencies as a function of b/a for TE-electric
modes.

tained from (15). All the C,’s with r # O are evaluated in

terms of CO. Since the basis field ~,(r~) consists of two parts

(;;(~T); X>o
;&’T)= ._ _

6?1 (r’r); X<o

where

[

;~ (~T); region I
Z: (rT) = . _

e~(rT); region II

(21)

and ;t– (r~) can be obtained from ;: (FJ by appropriate

symmetry conditions, subsequent normalization of eJTJ

[see equation (l)] yields the value of Co.

The normalized modal cutoff frequencies (a/AC) of a

symmetrical crossed rectangular waveguide are determined

and shown in Figs. 3–6 as a function of the ratio b/a

for all four distinct modes. For the case of b/a= O, the

cutoff frequencies indeed coincide with those of the square

waveguide of dimension a. As a consequence, the modal

designations are referred to those in square waveguide with
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Fig. 4. Normalized cutoff frequencies as a function of b/a for TE-
magnetic modes.

the corresponding boundary conditions. Note for several

lower order modes, ridge loading on the corners of a square

waveguide raises the cutoff frequencies of the TE ~~,TM ~~

modes (Fig. 4, Fig. 6), and splits the TE20 ,TE02 modes into

TE20L and TE20” modes, lifting the orthogonal degeneracy

(Fig. 3). However, the degeneracy of the TEO1 and TEIO

modes is retained, as can be seen from Figs. 3 and 4, in
spite of ridge loading. The cutoff frequencies calculated for
TEIO, TE1 ~, and TM ~~ modes agree with the experimental

results [5] within one percent except in a couple of points.

For higher order modes TEij and TEji (or TMij and TMji)

modes (i = even, j = odd or vice versa) remain degenerate,

whereas the degeneracies of TEij and TEji (or TMij and

TMji) modes (i= even, j = even, i #j; or i = odd, j = odd,

i #j) in a square waveguide are destroyed by ridge loading.

The bandwidth percentage of a waveguide is defined as

*W= AC. – /lc+

AC. + /lc+
x 200 percent (22)

2.:

2.C

;
>

1,5

1.0

0.5
c

(b/a)

Fig. 5. Normalized cutoff frequencies as a function of b/a for TM-electric
modes.

where AC- is the cutoff wavelength of the fundamental mode,

and AC+ is the cutoff wavelength of the first higher order

mode. The bandwidth characteristics for symmetrical

crossed rectangular waveguides have been calculated and

plotted in Fig. 7. The maximum bandwidth (about 38

percent) incurs when b/a = 0.225. To the left of the peak as

shown in Fig. 7, the bandwidth is determined by the TE1 o

and TM1 ~ modes, whereas to the right by the TE1 o and
TE20 modes. This feature of a 38-percent maximum band-

width over the 34 percent for a square waveguide makes

the symmetrical crossed rectangular waveguide compatible

with the quadruple-ridged circular waveguide [2]. However,

if asymmetrical excitation is applied, the maximum band-

width of 66 percent can be achieved when bfa = 0.325 where

TM ~~ mode is the deciding factor.

IV. CONCLUSION

Theoretical formulas for finding cutoff frequencies and
modal field expressions are obtained for crossed rectangular
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Fig. 7. Bandwidth characteristic curve for symmetrical crossed rectangu-
lar waveguide.
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waveguide by application of the Ritz–Galerkin method.

A specific example of a symmetrical rectangular waveguide

is chosen. Cutoff frequencies are calculated numerically and

verified by available experimental data. The bandwidth can

be increased to a maximum of 38 percent when waveguide

dimensions are properly selected. The numerical results

obtained here agree with those by the method of partial

regions [9], It is believed that the modal field equations

formulated here can be used in a modal matching technique

[10], [11] to predict transmission characteristics of a plane

wave throttgh a thin conducting sheet perforated period-

ically with crossed rectangular shaped apertures.

APPENDIX

A. TE-Magnetic Mode

The electric fields in regions I and II are given by

+ k.l. COS (kX.. x)

“ Cos ( )1#&$Y-a3) ~

M

Z2(FT) = – ~ rlzm

[

~ cos (k.Jx – az))
m=o a4 + a4

“ sin
( )

a(~-a4) ~

– k.zm sin (kX,m(x – a,))

“ Cos ( )1=(y-a4) J .

(23)

(24)

Making the expansion

E9(y) = ~ C, COg
(

*(Y - a4)
)

(25)
,=0

one finds that the matrix elements are given by

~x2q

The relations between field

components are

Pn,Pnq
tan (kxlnal)

~. (26)
kX..e.(a3 + as)

coefficients and eigenvector

R-,~oc,Pnv

‘1” = kX1. cos (kX..a1)sJa3 + ai)

– cm

‘2m= kX2m sin (kX2m(a2 – al))”

(27)

(28)
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B. TM-Electric Mode The relations between field coefficients and eigenvector

The transverse electric fields in regions I and II are given components are

. sin
( )

*(Y– U3) ~

m
+ — sin (kXl. x)

a3 + a;

“ Cos
( )1fi(Y-a3) ~

M

[

~2(7T)= ~ hm kxzm Cos (kxzrn(~ – U2))
~=1

“ sin
( )

=(Y-U4) ~

+ ~ sin (kXzm(x – a2))

“ Cos
( )1a(y–dj .

The z components of the electric field are given

~lz(r~) = ~ <1” sin (k.ln~)
~=1

* sin
( )

%(y-a3) ~

e2z(~T) = f <zm sin (LJ~ – %))

~=1

. sin
( )
& (Y – a4) ~.

Making the expansion

E~(y) = ~ C, sin
(
*(Y - U4)

r= 1 )

one finds that the matrix elements are given by

HJk~) = kx2~ cot (kx2~(a2 – U1)NU4 + ui)~qp

L

by

+ 2 ~ %.llnqkxl~ cot (kXl”al)/(as + a~)
“=1

where

P., = J“’ sin
i
+(Y - a3)

– a&t )

. sin
( )
= (Y – aa) dy

,$,c,<.

lln = (36)
sin (kX.~a1&(a3 + a~)

{2* = .
– cm

sm (kX2m(a2 – al)) o
(37)

C. TM-Magnetic Mode

The transverse electric fields in regions I and II are given

(29) by

[
i?l(r~) = – ~ {l. kX1. sin (kXl.x)

~=1

“ sin
( )

*(Y-U3) ~

n7c— — COS (kX1ux)
a3 + aj

“ Cos
( )1fi(y-u3) ~ (38)

(30)

[
Z2(F~) = f’ t2m kX2m cos (kX.m(x – a2))

m=l

. sin
( )

*(Y-U4) ~

(31)
+ ~ sin (kX..(x – az))

a4 + a4

“ Cos
( )1

=(Y–U4) } . (39)

The z components of the electric field are given by

(33)

Z2Z(7T) = ~ ~z~ sin (kX2m(x – a2))
~=1

. sin
( )
*(y – U4) ~.

Making the expansion
(34)

one finds that the matrix elements are given by

(41)

(40)

(

(

aj). (43)

(42)

~=1
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The relations between field coefficients and eigenvector [4

components are

,~1cvPnr [5]

(,. = (44) ~61
COS (kx1na1~(a3 + a!)

{2m = ‘cm
sin (kXzm(az – al))’

(’w [7]

[1]

[2]

[3]
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Iterative Solutions of Waveguide
Discontinuity Problems

MAGDY F. ISKANDER, MEMBER, IEEE, AND M. A. K. HAMID, SENIOR MEMBER, IEEE

Abstract—The method of overlapping regions, together with

Schwarz’s technique, is applied to waveguide discontinuity y problems
to illustrate its potential and basic advantages and disadvantages over
other methods, The method reasonably corrects an a~rbitrary initial
assumption of field dktribution in the plane of discontinuity y to the
final value in a small number of iterations. The advantages are

illustrated for a waveguide bend and dumbbell shaped waveguide as
examples of transverse and longitudinal discontinuities, respectively.

Numerical results for the case where only the electric field is par-

allel to the sharp edge discontinuity are presented and compared

with available data, while extension to the case where only the
magnetic field is parallel to the edge is discussed.

I. INTRODUCTION

sHARP waveguide discontinuities are extensively used in

numerous microwave power and communication cir-
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cuits, and their effects have been under investigation in the

last few decades. Generally, these discontinuities are charac-

terized as either transverse or longitudinal, depending on

whether the discontinuity lies in a plane transverse or

parallel to the direction of propagation, respectively, or

both. Waveguide junctions and bends are typical examples

of transverse discontinuities, while waveguide complex cross

sections belong to the class of longitudinal discontinuities,

Earlier attempts to characterize such discontinuities in-

clude rigorous, quasi-rigorous, numerical, and experimental

techniques [1]–[4]. The results normally permit computa-

tion of scattering matrix parameters, which may be used to

evaluate the parameters of an equivalent circuit, cutoff
wave numbers, and mode coefficients leading to propaga-

tion coefficients and field configurations.

While no method can be expected to deal with the most

general case of mixed types of discontinuities and arbitrary

waveguide boundaries, the choice of one method over others

for the most common discontinuities depends on the shape

as well as the electrical and physical dimensions of the

waveguide. Thus due to its asymptotic nature, the geometri-
cal theory of diffraction, in which the discontinuity is viewed

as multiple body interaction, becomes more appropriate as

the smallest linear dimension exceeds one wavelength [5].

However, when the distances between edges and corners are


